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The dynamic interaction of a shockwave (modelled as a pressure pulse) with an
initially spherically oscillating bubble is investigated. Upon the shockwave impact,
the bubble deforms non-spherically and the flow field surrounding the bubble is
determined with potential flow theory using the boundary-element method (BEM).
The primary advantage of this method is its computational efficiency. The simulation
process is repeated until the two opposite sides of the bubble surface collide with
each other (i.e. the formation of a jet along the shockwave propagation direction).
The collapse time of the bubble, its shape and the velocity of the jet are calculated.
Moreover, the impact pressure is estimated based on water-hammer pressure theory.
The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet
impact) are also determined. Overall, the simulated results compare favourably with
experimental observations of lithotripter shockwave interaction with single bubbles
(using laser-induced bubbles at various oscillation stages). The simulations confirm
the experimental observation that the most intense collapse, with the highest jet
velocity and impact pressure, occurs for bubbles with intermediate size during the
contraction phase when the collapse time of the bubble is approximately equal to the
compressive pulse duration of the shock wave. Under this condition, the maximum
amount of energy of the incident shockwave is transferred to the collapsing bubble.
Further, the effect of the bubble contents (ideal gas with different initial pressures)
and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the
dynamics of the shockwave–bubble interaction are discussed.

1. Introduction
The formation of a high-speed jet in a collapsing bubble was first suggested by

Kornfeld & Suvorov (1944), almost three decades after the initial study of spherically

† Author to whom correspondence should be addressed.
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oscillating bubbles by Lord Rayleigh (1917). This jetting phenomenon is caused by a
non-uniform fluid flow around the bubble. This flow non-uniformity can be caused by
the presence of a boundary near the oscillating bubble. Another mechanism causing
jet formation in an oscillating or quiescent bubble (under free-field conditions) is
through the interaction of a bubble with an impinging shockwave. For the former,
high-speed jets from collapsing bubbles may contribute to the severe damage to ship
propellers or pumps (Young 1989; Philipp & Lauterborn 1998), and to structures
after underwater explosions (Cole 1948; Klaseboer et al. 2005a, b). In the latter case,
the jetting produced by shockwave–bubble interaction is often even more violent and
destructive, with a jet velocity up to several km s−1 (Bourne & Field 1999; Klaseboer
et al. 2006b). Apart from its destructive nature, cavitation-induced jets can also be
harnessed for constructive use, for instance, in a micro-pump system as proposed by
Khoo, Klaseboer & Hung (2005) or Lew, Klaseboer & Khoo (2007).

An area where shockwave–bubble interaction has been found to play a critical role
is shockwave lithotripsy (SWL), in which high-energy shockwaves are used for non-
invasive disintegration of kidney stones in patients (Chaussy, Brendel & Schmiedt
1980; Delius 2000). Among the various mechanisms investigated (Coleman et al. 1987;
Crum 1988; Delius & Brendel 1988; Gracewski et al. 1993; Zhong & Chuong 1993;
Zhong et al. 1993; Lokhandwalla & Sturtevant 2000; Eisenmenger 2001; Xi & Zhong
2001; Cleveland & Sapozhnikov 2005), cavitation is believed to play an important
role in ensuring the successful disintegration of kidney stones to fine fragments for
spontaneous discharge (Zhu et al. 2002). The interaction of a lithotripter shockwave
with either pre-existing bubbles or bubbles produced by preceding lithotripter pulses,
may lead to the formation of high-speed jets in the direction of the shockwave
propagation, resulting in the generation of a localized stress concentration on the
surface of the kidney stones at the bubble collapse site (Xi & Zhong 2000). In
addition, cavitation and shockwave–bubble interaction are believed to contribute to
renal tissue injuries produced in SWL, although the underlying mechanisms may
be substantially different (Philipp et al. 1993; Zhong et al. 2001; Jamaluddin 2006).
Optimization of the shockwave–bubble interaction has been suggested as a means of
maximizing stone comminution while minimizing the collateral tissue injury in SWL
(Zhong & Zhou 2001; Zhou et al. 2004).

Several attempts have been made to understand better the dynamics of shockwave–
bubble interaction under well-controlled experimental conditions. For example,
Bourne & Field (1992) investigated the collapse of a 6 mm cylindrical air cavity,
embedded in a gelatin/water mixture, by a planar shock of 1.88 GPa. Kodama &
Takayama (1998) studied the interaction of a spherical shock of about 10 MPa, gener-
ated by micro explosives, with a 0.8 mm diameter bubble attached to the surface of a
tissue mimicking gel phantom. Jetting was observed in the interaction of shockwaves
with micron sized bubbles experimentally by Ohl & Ikink (2003). Although most of the
previous studies were concentrated on shockwave interaction with a stationary bubble,
Sankin et al. (2005) made the first experimental study on shockwave interaction with
a laser-generated inertial oscillating cavitation bubble in water. Calvisi et al. (2005)
reported preliminary results concerning the numerical modelling of these experiments.
In particular, Sankin et al. (2005) examined the influence of the phase of the bubble
oscillation (relative to the impinging shockwave) on resultant jet formation and
secondary shockwave generation. They observed a phase-dependent amplification in
jet velocity and impact pressure, which could have significant implications not only
for SWL, but also for ultrasound-mediated drug and gene delivery (Sankin & Zhong
2006), or other situations involving the interaction of shockwaves with oscillating
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Figure 1. Experimental set-up (schematic); a laser-generated bubble in a water tank is being
hit by a shockwave (SW) from a piezoelectric shockwave generator. The pressure is measured
with a pressure sensor, which is mounted at a distance zp behind the bubble.

bubbles. In light of these previous studies, it is highly desirable to further develop a
numerical model that can be used to simulate shockwave–inertial bubble interaction
and the resultant asymmetric collapse and jet formation.

Numerical simulations can capture specific details in the transient shockwave–
bubble interaction that are significant and yet difficult or sometimes impossible to
obtain experimentally. Several numerical techniques have been used to simulate
shockwave–bubble interaction with resultant jet formation, including the free-
Lagrange method (Ball et al. 2000; Turangan et al. 2008), the arbitrary Lagrangian
Eulerian method (Ding and Gracewski 1996), and the boundary-element method
(BEM) (Calvisi et al. 2005; Klaseboer et al. 2006b). In comparison, BEM is most
efficient in terms of the use of storage space and computational time (Klaseboer et al.
2006b). For the simulation of the interaction of a bubble with a planar shockwave,
the computational time for the BEM approach is only several minutes on a common
personal computer compared to several days for other methods. The BEM predictions
agree favourably with both experimental results and numerical data from the free-
Lagrange and arbitrary Lagrangian Eulerian methods. However, the other methods
can provide more details about the flow field, such as the reflection of shockwaves,
which cannot be obtained using the BEM.

In this work, the BEM model developed by Klaseboer et al. (2006a, b) is extended
to simulate the interaction of a shockwave with an initially oscillating cavitation
bubble, based primarily on the experimental study of Sankin et al. (2005), together
with some new experimental results. The paper is organized as follows. In § 2, the
experimental set-up is described, followed by the model and the simulation method
in § 3. In § 4, the simulation results are compared with experimental observations. The
physics and observations from the simulations are discussed in § 5, and finally, the
conclusions are given in § 6.

2. Experimental set-up
A schematic diagram of the experimental set-up is shown in figure 1. A Q-

switched Nd:YAG laser (wavelength 1064 nm and pulse duration of 3–5 ns) was
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Figure 2. (a) Typical experimental shockwave profile measured in the fluid in the presence of
a bubble, with the bubble collapse peak indicated. The bubble collapse time (Tc) and the bubble
collapse pressure peak (Pc) are as indicated. (b) Averaged smoothed experimental shockwave
profile in the absence of a bubble, P (t∗), as a function of t∗ with peak pressure 39 MPa. This
profile is used in this paper for the numerical simulations. The pulse has an approximately
1 µs compressive wave followed by a 2 µs tensile wave of −8MPa. The subsequent secondary
oscillations in the profiles are due to reflections.

focused in water to generate a single cavitation bubble (Rmax =300 µm) via optical
breakdown. This method offers excellent control over the maximum bubble radius
(there is about 5 % deviation in the maximum radius in the experiments). The laser
was aligned horizontally with its beam focus coinciding with the focal point of a
piezoelectric shockwave lithotripter (FB12, Richard Wolf). The pressure waveforms
were measured using a fibre optic probe hydrophone (FOPH-500, RP Acoustics,
Leutenbach, Germany). The 100 µm probe tip of the hydrophone was aligned vertically
at a distance zp = 1.1mm from the focus. The hydrophone was thus placed directly
behind the bubble, allowing a direct measurement of the secondary shockwave
emission produced by the lithotripter pulse–bubble interaction (see e.g. figure 2a).
The dynamics of the shockwave–bubble interaction were captured using a high-speed
imaging system (Imacon 200, DRS Hadland) at a framing rate of 2 million frames
per second. Experimental details can be found in Sankin et al. (2005).

3. Mathematical model for the shockwave–bubble interaction
This section describes an extension of the mathematical model of shockwave–

bubble interaction as introduced by Klaseboer et al. (2006b). The differences between
the current model and that of Klaseboer et al. (2006b) are the implementation of



Interaction of lithotripter shockwaves with cavitation bubbles 37

a realistic experimental shockwave profile (figure 2b) and the use of different initial
bubble conditions (oscillating vs. non-oscillating bubble).

3.1. Oscillating bubble prior to its interaction with the shockwave

Some theoretical results concerning a spherically oscillating bubble, which are used to
model the bubble before the shockwave impinges on it, are discussed here. The fluid
flow around the bubble will be represented by a velocity potential, Φ , which satisfies
the Laplace equation ∇2Φ = 0. The gradient of the potential gives the velocity vector
u = ∇Φ . If the bubble is far from boundaries (either free surfaces or solid structures),
and in the absence of other disturbances (such as buoyancy for small bubbles), the
bubble will oscillate spherically prior to the interaction with the shockwave. Continuity
of mass of the fluid around the spherically expanding bubble requires that the radial
fluid velocity ur depends on the radial coordinate d (with its origin in the centre of
the bubble) as d2ur = R2dR/dt , where R and dR/dt denote the bubble radius and
bubble wall velocity at time t , respectively. Thus, the velocity potential becomes

Φ = −R2

d

dR

dt
. (1)

Assuming that the internal pressure of the bubble, pb (which originates mainly
from its non-condensable gas contents), behaves adiabatically and is uniform across
the bubble, then

pb = p00

(
V00

V

)γ

, (2)

where V is the bubble volume, p00 is the internal pressure at initial bubble volume
V00(V00 = (4/3)πR3

00, with R00 denoting the initial bubble radius) and γ is the ratio of
specific heats of the bubble contents. For oscillating underwater explosion bubbles,
γ was measured to be 1.25 (Cole 1948). It is assumed here that for laser-generated
bubbles, this value will also hold. The vapour pressure, which for slow oscillations
can be considered a small constant independent of bubble volume, has been neglected
in this analysis, but it can be incorporated in (2) when deemed necessary. More
complicated models than (2) for modelling the bubble interior are available in the
literature (see for example Szeri et al. 2003, in which heat and mass transfer across
the bubble surface were taken into account).

Spherically oscillating bubbles have been studied extensively (Rayleigh 1917;
Brennen 1995). Usually, the equation of motion of the bubble is described by the
Rayleigh–Plesset equation. Applying the unsteady Bernoulli equation at the bubble
surface, using (1) and setting the fluid pressure to pb, leads directly to the simplest
form of the Rayleigh–Plesset equation

pb − pref

ρ
=

3

2

(
dR

dt

)2

+ R
d2R

dt2
, (3)

where pref is the hydrostatic pressure and ρ denotes the density of the surrounding
liquid (i.e. water, ρ =1000 kg m−3). In the current set-up, pref is equal to the
atmospheric pressure (1 bar) such that pref = pAtm = 0.1 MPa. Using (2), an analytical
solution of (3) exists, which relates dR/dt to R as (Brennen 1995)

3

2

(
dR

dt

)2

=
pref

ρ

(
R3

00

R3
− 1

)
− p00

ρ (γ − 1)

(
R

3γ
00

R3γ
− R3

00

R3

)
. (4)
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Figure 3. (a) Typical radius–time (R–t) plot for an oscillating bubble, not interacting with a
shockwave, as determined by solving (3) numerically. Following the notation of Sankin et al.
(2005), we distinguish between an expanding (‘E’) and collapsing (‘C’) phase of a bubble. The
maximum radius of the bubbles used in this article is Rmax = 300 µm and the experimental
oscillation time is tosc = 57.2 ± 0.8 µs (Sankin et al. 2005). (b) The pressure inside the bubble,
pb, according to (2). Note the very peaked nature of this pressure; it is pb = p00 for R = R00,
but almost zero at any other instant.

This equation automatically satisfies the initial condition dR/dt = 0 at R = R00.
When the bubble reaches its maximum radius R = Rmax, the velocity becomes again
dR/dt = 0, thus:

R3
00

R3
max

− 1 =
p00

pref

1

γ − 1

(
R

3γ
00

R
3γ
max

− R3
00

R3
max

)
. (5)

No analytical solution, however, is known that directly relates R to t . By solving (3)
using a Runge–Kutta scheme, a typical bubble radius–time profile can be obtained
(figure 3a). The bubble starts off with an initial radius R00, grows rapidly to reach a
maximum radius Rmax, then collapses, followed by subsequent rebounds. The bubble’s
oscillation time, defined as the time from inception through maximum expansion
to primary collapse, can be expressed as almost twice the Rayleigh collapse time
(Brennen 1995):

tosc = 2 × 0.915Rmax

√
ρ/pref. (6)

The numerical value for tosc is 54.9 µs, based on Rmax = 300 µm, ρ = 1000 kg m−3 and
pref = 0.1 MPa. It corresponds well with the experimental value of 57.2 µs (taking
into account the uncertainty range of 5 % of the experimental Rmax). Using (1), the
potential on the surface of an oscillating bubble with radius R0 (i.e. the radius of
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Figure 4. Schematic diagram of an upwards moving shockwave hitting a bubble. The
shockwave moves upwards with velocity vs across the bubble. At the moment the shock
hits the bubble, the radius of the bubble attains a value R0. The shockwave hits the lower part
of an expanding, or ‘E’, bubble in (a). In (b), a collapsing, or ‘C’, bubble is being hit by the
same shockwave.

the bubble at the moment of the shockwave impact) can be determined by setting
d = R = R0 and substituting dR/dt from (4) as

Φ (R0) = ±R0

√√√√2pref

3ρ

(
R3

00

R3
0

− 1

)
− 2p00

3ρ (γ − 1)

(
R

3γ
00

R
3γ
0

− R3
00

R3
0

)
. (7)

The appropriate sign must be chosen in (7): negative for an expanding ‘E’ bubble
and positive for a collapsing ‘C’ bubble.

A dimensionless parameter ε (often referred to as the strength parameter in bubble
dynamics) is defined as

ε = p00/pref. (8)

It is important to note that in (5) only two of the dimensionless parameters ε,
R00/Rmax and γ can be chosen independently. In fact, (5) is used to calculate R00

in the numerical model, assuming the other parameters are given. The pressure
(pb) inside an oscillating bubble is shown in figure 3(b), which (initially pb = p00)
drops below the atmospheric pressure as the bubble expands to its maximum size.
Upon collapse, and in the absence of energy dissipation, the pressure will gradually
increase, reaching pb = p00 once again as the bubble returns to its original size. The
value ofp00 can easily attain 100 to 500 bar for explosion bubbles (Cole 1948). For
convenience, a value p00 = 100 bar (thus ε = 100) is chosen as the default value in
this work, unless otherwise noted. Using (5), we determine the corresponding value
of R00/Rmax =0.1485. It can be shown that the effect of ε on the dynamics of the
shockwave–bubble interaction is insignificant (see § 5.2 and the Appendix).

3.2. Pressure pulse (shockwave)–bubble interaction

The simulation of a shockwave as a pressure pulse that interacts with a bubble is
depicted schematically in figure 4. The pressure pulse is modelled as a planar wave
moving in the z-direction with a constant velocity vs . Here, vs is assumed to be
the velocity of sound in water, i.e. vs =1500 m s−1. The bubble has an initial radius
R0 at the moment of its first interaction with the front of the shockwave, which is
moving upwards. The bubble is either in its expansion phase (‘E’, see also figure 3a)
or collapse phase (‘C’) at this instant.

During shockwave–bubble interaction, potential flow is assumed to remain valid,
despite the fact that a shockwave is present, and thus the fluid flow around the bubble



40 E. Klaseboer and others

will be represented by a velocity potential Φ , as in § 3.1. Owing to potential theory,
the unsteady Bernoulli equation applies anywhere in the fluid as well as on the bubble
surface (similar to Blake et al. 1999):

pb = P (z, t) − ρ
DΦ

Dt
+ 1

2
ρ |u|2 , (9)

where pb is defined in (2) and P (z, t) is the far-field reference pressure. The material
derivative D/Dt = ∂/∂t + u · ∇ is used since the bubble surface is moving with the
flow. Buoyancy is ignored owing to the small size (<1 mm) and collapse times (< 4 µs)
of the bubbles considered here. Surface tension effects are also neglected since they
are usually much smaller than the other pressures in the system (i.e. shockwave peak
positive pressure and hydrostatic pressure) in the size range of the bubbles considered
in this work. However, for extremely small bubbles (<10 µm), surface tension may
become important. In the context of this paper, it is assumed that (2) describes the
physics of the gas contents of the bubble correctly, at least in the first approximation
for both spherically symmetric and non-spherical bubbles. Some discussion on the
validity of the approach of using potential flow and the use of (9) will be given in
§ 5.3.

For the numerical simulations, a smoothed pressure profile based on experimental
measurement, without a laser-generated bubble, was used (figure 2b). This shockwave
consists of a compressive wave with a peak pressure of 39 MPa for a duration of
about 1µs, followed by a tensile wave of −8 MPa for a duration of about 2 µs. This
profile is incorporated (similar to the approach followed by Klaseboer et al. 2006b)
both temporally and spatially, into the far-field reference pressure term P (z, t) = P (t∗)
in (9) via

t∗ = t − (z + R0)/vs, (10)

assuming that (r , z) = (0, 0) corresponds to the centre of the bubble at t = 0. If t∗ < 0,
the reference pressure P (z, t) is set to be equal to pref. The absolute time is equal to
t= 0 when the front of the shockwave hits the bubble. The initial conditions for the
potential of the bubble wall at t= 0 are taken from the analytical solution (7) derived
from the Rayleigh–Plesset equation, which is a function of the bubble radius R0at the
moment of shockwave impact (R00 < R0 <Rmax). This potential Φ(R0) is uniform on
the bubble surface prior to the shockwave impact as the geometry of the bubble is
still spherically symmetric.

3.3. Boundary-element method (BEM)

When the shockwave impinges on the bubble at t = 0, the spherical symmetry of
the bubble will be disrupted and the potential is no longer uniform over the bubble
surface. The entire flow field must now be solved using the Laplace equation in the
fluid domain. An integral solution of the Laplace equation uses the BEM as (see
Blake, Taib & Doherty 1986)

c(x)Φ(x) +

∫
S

Φ( y)
∂G( y, x)

∂n
dS =

∫
S

G( y, x)
∂Φ( y)

∂n
dS. (11)

In (11), the potential on the bubble surface, Φ , is related to the normal velocity at this
surface, i.e. ∂Φ/∂n = n · ∇Φ = n · u, where G( y, x) = 1/|x − y| represents the free space
Green’s function. The solid angle, c(x), is viewed from the fluid at a location x on the
bubble boundary S. The integrations are performed on the bubble surface S where
y is the integration vector. The boundary-element formulation uses the fact that if
the potential is known everywhere on the surface S, the normal derivative of the
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potential can be determined. For the problem under consideration, an axisymmetric
boundary-element method is used (Wang et al. 1996). However, the principle as
described here is not limited to axisymmetric configurations, but can also be applied
to fully three-dimensional cases.

The bubble surface is divided into 50 linear elements using 51 nodes. For each
node, (11) will provide an equation between the 51 potentials and normal velocities
by piecewise integration on each element. Combining all 51 equations, the unknown
normal velocities are solved from the resulting matrix equation. The potentials and
normal velocities are also assumed to be distributed linearly on an element. From the
potential distribution along the bubble surface, the tangential velocity is obtained.
Together with the normal velocity, the velocity vector u can now be constructed.
The far-field pressure P (z, t) is known from experiment. From the volume of the
bubble, its internal pressure, pb, can be obtained using (2). The potentials on the
bubble surface at the next time step for each node can be obtained from a numerical
discretization of (9) with respect to time. The above procedure is continued until
the impinging jet of the bubble impacts the bubble’s opposite surface. The time step
is constant and chosen to be 3 × 10−10 s. The numerical code has been extensively
tested in the past for underwater explosions (for example Wang et al. 1996) and
shockwave–bubble interaction (Klaseboer et al. 2006a, b). It has also been compared
to a theoretical solution for non-spherically oscillating bubbles (Klaseboer & Khoo
2006).

4. Results
4.1. Bubble shape and collapse time

The upper portions of figures 5(a) to 5(e) show experimental results for bubbles with
R0/Rmax∼ 0.50 and ∼0.65 (for both expanding ‘E’ and collapsing ‘C’ cases), and one
bubble with R0/Rmax∼ 1.0. Only the bubble shapes immediately before the shockwave
impact (left-hand image) and near the moment of minimal bubble volume (right-
hand image) are shown, whereas the complete sequence can be found in Sankin et al.
(2005). All bubbles develop a protrusion in the direction of shockwave propagation
(upwards in this case), presumably as a result of the jet impact. Bearing in mind the
experimental uncertainty with respect to the time interval of 0.5 µs between successive
images, the experimental evidence suggests that smaller bubbles collapse faster than
larger ones. For the same size (measured by R0/Rmax), the collapse time of a bubble
in the expansion phase is longer than its counterpart in the contraction phase. In the
case R0/Rmax∼ 1.0, the bubble flattens during collapse (figure 5c).

In the lower half of each panel in figure 5, numerical results corresponding to the
experimental observations are presented, together with an additional case for a ‘C’
bubble with R0/Rmax =0.16. The times (in µs) at which the numerical images are
taken are indicated. At t=0 µs, just before the shockwave impacts on the lower part
of the bubble, the geometry of the bubble is spherically symmetric for all cases. This
corresponds to the left-hand image of the experimental data matching the outer most
curve for the numerical data.

For the ‘C’ bubble with R0/Rmax = 0.16, which corresponds to the smallest initial
bubble in the numerical simulations, there is clearly a developing jet, which impacts
at t = 0.48 µs when the two opposite surfaces of the bubble collide (figure 5f ). As the
collapse time is less than 1 µs, the shockwave is still in its compression stage at the
moment of jet impact (see figure 2b).
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Figure 5. Bubble shapes. Experimental: (a) R0/Rmax =0.53 ‘E’; (b) 0.65 ‘E’ (c) 1.0 (d) 0.5 ‘C’;
(e) 0.67 ‘C’. Numerical: (a) R0/Rmax = 0.5 ‘E’; (b) 0.65 ‘E’; (c) 1.0; (d) 0.5 ‘C’; (e) 0.65 ‘C’; (f )
0.16 ‘C’. The full set of experimental frames can be found in Sankin et al. (2005). Numerical
and experimental images are not plotted on the same scale. In the experimental results, the
image on the left-hand side is taken at t = 0 µs (the moment when the shockwave first hits
the bubble), while the corresponding image on the right is around the moment of jet impact
(time provided below the image). The times corresponding to the numerical images are also
indicated in the figures (in µs). The definition of Rjet is indicated in figure 5(a), (c) and (f )
(the inset with black rectangle).

For bubbles with R0/Rmax = 0.50 (figure 5a, d), much flatter and broader jets are
developed when compared to the R0/Rmax = 0.16 case. Although the shapes for an ‘E’
bubble in figure 5(a) and a ‘C’ bubble in figure 5(d) are similar, the collapse times are
quite different (0.96 µs for the ‘C’ bubble and 1.32 µs for the ‘E’ bubble). Moreover,
at the moment of collision, the ‘E’ bubble has a slightly flatter bottom part, leading
to the first contact between the ‘top’ and ‘bottom’ surfaces being established further
off the axis of symmetry.
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Figure 6. Experimental and numerical collapse time Tc (in µs) versus normalized bubble
radius (R0/Rmax) when lithotripter shockwave–bubble interaction occurs at the expanding ‘E’
(upper curve) and collapsing ‘C’ phase (lower curve) of the bubble oscillation. Numerical
results are indicated by a continuous line. The dotted line represents the results for an initially
non-oscillating bubble non-dimensionalized with Rmax = 300 µm (see § 5.1).

Similar remarks can be made for the R0/Rmax = 0.65 cases (figure 5b, e); the ‘C’
bubble seems to form a slightly more rounded jet than the ‘E’ bubble. Again the
collapse time is different: in the ‘C’ bubble, the surface collision occurs at 1.32 µs
whereas in the ‘E’ bubble, it occurs at 1.77 µs. The results of the simulation seem to
suggest that the compressive part of the shockwave (∼1 µs) has completely passed
the bubble prior to the surface collision. Therefore, the tensile pressure component of
the shockwave will act on the bubble for a brief moment before the bubble reaches
its minimum volume. For the largest initial bubble with R0/Rmax = 1.0 (figure 5c),
the jet impacts at 3.51 µs, with a bubble that has a peculiar flat shape, which is also
observed in the experiments.

The numerical simulations also indicate, as a result of the shockwave–bubble
interaction, an upwards translation of the centroid of the bubble in the direction of
the shockwave propagation. This can be observed in figure 5(b) for the ‘E’ bubble
with R0/Rmax = 0.65, when the bubble shapes at t = 0.00 µs and t = 0.60 µs are
compared. During this short duration, the bottom portion of the bubble is contracting
while the top portion of the bubble shows an initial expansion before the shockwave
reaches the upper pole of the bubble, after which the whole bubble surface contracts.
This pressure imbalance of the shockwave–bubble interaction appears to be the main
driving force that leads to the upwards translational motion of the bubble. For
bubbles with other values of R0/Rmax, between 0.16 and 1.00, the general features of
the asymmetric collapse are similar to those shown in figure 5 (data not shown).

In figure 6, the experimentally measured collapse times Tc (figure 2a) are shown for
various values of R0/Rmax for both ‘E’ and ‘C’ bubbles. For each group of bubbles,
the smaller the value of R0/Rmax, the faster the bubble collapses. Furthermore, at
a given R0/Rmax, an initially collapsing bubble consistently collapses faster than an
initially expanding bubble. No experimental data is available for very low values of
R0/Rmax because of the non-spherical distortion of laser-generated bubbles at their
early and late stages of oscillation. This deficiency, however, can be overcome by the
numerical simulation, which is extended to the minimal value of R0/Rmax = 0.1485.
The numerical ‘E’ and ‘C’ curves join at the top right-hand side and at the bottom
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Figure 7. (a) Experimental peak pressure Pc (see figure 2a) versus normalized bubble
radius (R0/Rmax) when lithotripter shockwave–bubble interaction occurs at the expanding
(lower curve ‘E’) and collapsing (upper curve ‘C’) phase of the bubble oscillation. The
markers indicate actual experimental values and the curves interpolate between these points.
(b) Numerical water-hammer pressure PWH based on the relative velocity (vrel) and the size
of the impacting jet (Rjet), both on jet impact, according to (14), simulated with the default
model.

left-hand side to form a closed curve. The experimental and numerical results show a
close resemblance. Further, the difference in Tc for a pair of ‘E’ and ‘C’ bubbles with
the same R0/Rmax ratio is about 0.5 µs within a large range of R0/Rmax.

4.2. Impact pressure and jet velocity

The collapse times of the bubbles and the bubble shapes at jet impact are not
the only interesting phenomena that can be investigated. The jet velocity and the
high-pressure pulse resulting from the impact of these jets are also of practical
interest. In figure 7(a), the experimentally measured peak pressure shortly after the
jet impact is plotted as a function of R0/Rmax, which reveals a stronger impact
pressure generated by a ‘C’ bubble than its ‘E’ bubble counterpart. The highest peak
pressures occur at intermediate values of R0/Rmax, not in the region of maximum or
minimum R0/Rmax. The absolute maximum impact pressure occurs for a collapsing
bubble around R0/Rmax = 0.7. As the value of R0/Rmax deviates from this optimal
number, the impacts pressure drops significantly; for very low R0/Rmax values, the
peak pressure is only about 1/4 of the maximum value.

Because the numerical model is based on incompressible potential theory, it cannot
be used to calculate directly the shockwave emission from the jet impact. However,
experimental observations have indicated a direct correlation between jet velocity
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Figure 8. (a) Numerical jet velocity (vjet) and velocity of the opposite bubble wall (vopp) at
the moment of jet impact versus normalized initial radius R0/Rmax for expanding (‘E’) and
collapsing (‘C’) bubbles for the default model with ε = 100. The velocity is taken positive when
the bubble wall moves inwards. (b) As in figure 8(a), but for the numerical relative velocity
(vrel = vjet + vopp). Experimental data are not available.

and impact pressure (Sankin et al. 2005). It is therefore reasonable to compare the
numerically calculated maximum jet velocity at the moment of surface collision with
the experimentally measured peak pressure. Further, the jet velocity can be used to
estimate the water-hammer pressure generated by the surface collision as shown later
in this section.

In figure 8(a), the numerically calculated jet velocity at the moment of surface
collision is plotted as a function of R0/Rmax for ‘E’ and ‘C’ bubbles. This jet velocity
can be extremely high and reaches a maximum value of 1260 m s−1 for a ‘C’ bubble
with R0/Rmax =0.5. The extreme speeds of the impacting jets are also the reason
why they cannot be measured reliably in experiments. Even at the smallest R0/Rmax

value (∼0.15), the jet velocity is still 570 m s−1. The lowest jet velocity is obtained
for R0/Rmax = 0.95 for an ‘E’ bubble at 410 m s−1. A careful inspection of figure 8(a)
reveals that the ‘E’ and ‘C’ curves for the jet velocity ‘cross over’ at R0/Rmax =0.2.
This means that the jet velocity of an ‘E’ bubble for R0/Rmax < 0.2 is larger than a ‘C’
bubble. For R0/Rmax > 0.2, the opposite is true. A possible explanation can be found
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when figure 6 is investigated more closely: the collapse time differences between ‘C’
and ‘E’ bubbles for smaller bubbles are proportionally much shorter than for larger
R0/Rmax. In other words, for R0/Rmax = 0.2, the difference is a factor 2, whereas for
large R0/Rmax, the difference is only 15 to 20 %. A consequence is that the time
available to develop high-speed jets for small R0/Rmax is comparatively much longer
for an ‘E’ bubble than for a ‘C’ bubble. Hence, for smaller ‘E’ bubbles, jets have longer
to run, accelerate and achieve higher velocities before impacting onto the opposite
bubble wall. The general trend in figure 7(a) seems to suggest that such a ‘crossing
over’ at R0/Rmax =0.2 may be possible. Overall, a strong resemblance can be seen
between figure 7(a) and 8(a).

Although a jet is developed by the involution of the lower portion of the bubble
(see figure 5), the upper portion of the bubble surface (opposite to the side where the
jet originates) can also have a non-negligible velocity. For example, the velocity of the
opposite bubble wall at the moment of surface collision, vopp, for a ‘C’ bubble with
R0/Rmax =0.6 is 475 m s−1 (figure 8a). The sign for vopp is positive if the upper pole of
the bubble moves inwards. For very low values of R0/Rmax, vopp can become negative
indicating that the upper pole of the bubble is re-expanding once the jet impacts on
it. Therefore a relative velocity vrel is defined as:

vrel = vjet + vopp. (12)

In figure 8(b), vrel is plotted as a function of R0/Rmax. The general shape of the ‘C’
and ‘E’ curves is similar to the jet velocity plots of figure 8(a). The relative velocity
between the impacting jet and the opposite bubble side is very high and reaches
a maximum of around 1730 m s−1 for a ‘C’ bubble with R0/Rmax ∼ 0.6. The relative
velocity of figure 8(b) also shows a strong resemblance to figure 7(a). The maximum
values of both the ‘E’ and ‘C’ curves occur at the same R0/Rmax values for both figures,
suggesting that the relative velocity may be a better parameter to correlate with the
peak pressure as measured experimentally. The curves for vrel exhibit a minimum near
R0/Rmax =1, yet the absolute minimum for vrel is obtained at R0/Rmax =0.15.

Tomita et al. (2002) have used the concept of water-hammer pressure PWH,0

(Brunton 1966) to relate vrel with the shockwave pressure produced by the jet impact:

PWH,0 = ρvsvrel/2. (13)

If we further assume that PWH,0 is confined to an area covered by the impacting
jet, and outside this region the impact pressure decays as 1/r (which seems to be
supported by the images of the expanding shock waves in figures 5a, 5d and 5e),
then the peak pressure measured at the location of the hydrophone probe tip (r = zp)
would be given by:

PWH =
Rjet

2zp

ρvsvrel, (14)

where the radius of the jet at the moment of surface collision, Rjet, can be obtained
from figure 5 and similar plots for other values of R0/Rmax. For example, in figures 5(a),
5(c) and 5(f ), the definition of Rjet is indicated (in the inset with the black rectangle).
It is found that Rjet increases approximately linearly from 10 µm for R0/Rmax = 0.15
to 50 µm for R0/Rmax = 1.0 without much difference between ‘E’ and ‘C’ bubbles.
For R0/Rmax = 0.53 (figure 5a), the jet radius is about 30 µm, or roughly 3/4 of
the horizontal bubble radius at the moment of surface collision. For R0/Rmax = 1.0
(figure 5c), Rjet =50 µm and the jet virtually covers the whole width of the bubble. In
contrast, for R0/Rmax = 0.16 (figure 5f ), the jet is much more slender with Rjet =10 µm,
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which is about half of the bubble radius at this moment. With the values of vrel and
Rjet, the variation of PWH for different values of R0/Rmax can be calculated as plotted
in figure 7(b), which reveals a remarkable resemblance to figure 7(a). The absolute
value of PWH , however, is about twice the measured pressure for large R0/Rmax. For
small values of R0/Rmax, the correspondence is much better with both the numerical
and experimental pressures of the order of 5MPa. This would indicate a peak pressure
of 350 MPa at the jet impact site. The highest estimated numerical pressure at the
jet impact site is 1290 MPa, which occurs for a ‘C’ bubble with R0/Rmax = 0.5. A
possible explanation for the discrepancy between the experimental and numerical
results of the impact pressure could be the definition of Rjet. A close inspection of
figure 5 and similar plots reveals that the jet becomes very flat for larger values
of R0/Rmax. For example, at R0/Rmax =1.0 the bubble becomes almost completely
flattened towards the end of the collapse phase with the jet occupying the entire
bubble width (figure 5c). For such a flattened region, the ‘effective’ Rjet could easily be
about half the one estimated, thus explaining the difference. Nevertheless, the trends
between the experimentally measured pressure of figure 7(a) and the numerically
calculated one in figure 7(b) are very similar.

At the jet impact and shortly afterwards, (14) is not exactly correct since the
shockwave emitted by the impacting jet will exhibit a piston-type shockwave profile
instead of a radially expanding one. At longer times after the jet impact (equivalent
to large zp), the shockwave emitted from the collapsing bubble behaves as a spherical
shock wave. This can be seen from the expanding shockwaves shown in figure 5,
and is also confirmed by the numerical simulations by Turangan et al. (2008), who
used the free-Lagrange method to simulate the shockwaves emitted from a jet in a
collapsing bubble. They observed that the piston-type shockwave rapidly turns into a
spherical shock wave.

4.3. Kelvin impulse, kinetic energy and bubble displacement

The physics of bubble collapse can be further illuminated through calculation of the
Kelvin impulse, the kinetic energy and the bubble displacement, all at the moment
of jet impact, as considered in this section. These quantities are difficult or even
impossible to measure, thereby motivating their calculation through numerical means.

The Kelvin impulse vector K is defined as the integral of the potential on the
bubble surface S multiplied by the normal vector n at this surface (Pearson, Blake &
Otto 2004):

K = ρ

∫
S

Φn dS. (15)

For a spherically oscillating bubble the Kelvin impulse vector will be zero, since
the potential Φ is then uniformly distributed along the surface of the bubble and∫

S
n dS = 0. Thus, the Kelvin impulse vector gives an indication of the degree of

asymmetry in the bubble collapse. Usually, the Kelvin impulse vector has the same
direction as the jet. Since the problem under consideration is axisymmetric, the
Kelvin impulse vector will only have a component in the z-direction. From now on
we will call this quantity K(= |K |). Regarding the Kelvin impulse K , a higher value
usually means a higher jet speed or a broader jet. In figure 9, K is plotted for both
‘C’ and ‘E’ bubbles at the moment of jet impact for different values of R0/Rmax,
again with the default bubble model (actually the dimensionless K or K ′ is plotted,
K = K ′R3

max

√
prefρ). The ‘C’ bubbles give a higher value of K ′ for all values of

R0/Rmax, except for a very small region with low R0/Rmax where again ‘crossing’ over
is observed as for the jet velocity graphs of figure 8 and the water-hammer pressure
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Figure 9. The dimensionless Kelvin impulse, K ′, at the moment of jet impact as a function
of R0/Rmax for the default bubble with ε = 100 (numerical results). The maximum value of K ′

appears around R0/Rmax = 0.7 for a ‘C’ bubble. The inset shows the typical ‘crossing over’ for
low values of R0/Rmax. Also indicated are the results for an empty bubble (§ 5.2), a bubble with
ε = 3906 (Appendix) and an initially non-oscillating bubble (dotted line; § 5.1). This figure can
be compared to figure 7(a).

graph of figure 7(b). Both ‘C’ and ‘E’ curves show a maximum value for intermediate
values of R0/Rmax (R0/Rmax = 0.7 for ‘C’ bubbles and R0/Rmax =0.6 for ‘E’ bubbles).
Very low values of K ′ are observed for low values of R0/Rmax. These trends are similar
to those observed for the experimental peak pressure (figure 7a) and the relative jet
velocity (figure 8b); however, the relative jet velocity and K ′ achieve their maxima at
different values of R0/Rmax. Thus the Kelvin impulse K ′ can also be used to predict
the qualitative behaviour of the observed experimental pressures.

From the above analysis, it appears that the experimental pressure profiles, as
shown in figure 7(a), correlate with the relative velocity, the water-hammer pressure
and the Kelvin impulse, as similar trends are observed in all these plots. Another
useful quantity is the kinetic energy of the liquid, which is defined as

E =
ρ

2

∫
W

|u|2 dW =
ρ

2

∫
S

Φ
∂Φ

∂n
dS, (16)

where the Gauss theorem is used to convert the integral over the whole fluid domain
W into a surface integral over the bubble surface S (see for example Pearson et al.
2004 or Klaseboer & Khoo 2006). When the dimensionless kinetic energy E′ (made
dimensionless with R3

maxpref) at the moment of jet impact is plotted as a function of
R0/Rmax (figure 10) for the default bubble model, we can see the strong resemblance
with figure 9. It appears that if the dimensionless kinetic energy E’, is divided by a
factor 140, it matches within 5% the dimensionless K ′ curve. A priori, there is no
reason why the Kelvin impulse and the kinetic energy should scale; however, they
both show similar behaviour at the moment of jet impact. The dimensionless kinetic
energy of the bubble at the moment of jet impact reaches a maximum value of
about 140. This value is many times higher than the energy of the oscillating bubble
system before jet impact, which is roughly (4/3)πR3

maxpref or dimensionless about
4.2 (Klaseboer & Khoo 2006). Thus, around 30 times as much energy as initially
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Figure 11. The displacement of the bubble centroid at the moment of jet impact as a function
of R0/Rmax for the experiment (triangles) and the default bubble with ε =100 (numerical
results). The maximum numerical value of the displacement appears around R0/Rmax = 0.8 for
a ‘C’ bubble. Also indicated are the results for an initially non-oscillating bubble (dotted line;
§ 5.1).

available has been transferred to the oscillating bubble owing to the interaction with
the shockwave.

Not only is a jet generated in the direction of the shockwave, the bubble as a
whole is also displaced in this direction. An easily obtainable variable, at least from
a numerical point of view, is the displacement of the bubble centroid at the moment
of jet impact (figure 11). The largest displacement is observed for a ‘C’ bubble at
R0/Rmax = 0.8 and reaches a value of about 82 µm. The highest value for an ‘E’ bubble
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is observed for R0/Rmax = 0.65 at 66 µm. The value R0/Rmax = 0.55 is a turning point,
since the trends are inverted for smaller R0/Rmax values where expanding bubbles
have a larger displacement at jet impact than collapsing bubbles. An explanation for
this phenomenon is that the expanding bubble has a longer period for displacement
than a collapsing bubble, as can be seen in figure 6. The ‘E’ and ‘C’ curves for the
default model join at the left- and right-hand side to form a closed loop in figure 11.

The experimentally obtained values for the displacement are also indicated in
figure 11 (these experimental data were not reported in Sankin et al. 2005). The
experimental displacement is measured as the distance between the centre of the laser
plasma and the hypocentre of the shockwave emitted by the collapsing bubble. The
order of magnitude of the observed displacements is the same as calculated with the
numerical model. Both give displacements of up to about 80 µm.

5. Discussion
5.1. Comparison with (initially) non-oscillating bubbles

It is instructive to see the differences between the behaviour of initially oscillating
and initially quiescent bubbles. Therefore, the simulations are repeated with a bubble
with initial condition dR/dt = 0 or Φ(R0) = 0, at the moment of shockwave impact,
using the same shockwave profile. The value of ε = 1.0 (instead of the default ε = 100)
must now be used to ensure that the parts of the bubble that have not yet been hit by
the shockwave stay at rest. The results can be plotted against the same dimensionless
R0/Rmax, with Rmax =300 µm again in order to be able to compare the results with
the previous sections (Rmax is not the maximum bubble radius in this case). It appears
that the collapse time for a specific value of R0/Rmax takes on about the average of the
‘C’ and ‘E’ bubbles for the default model (figure 6). For example, a bubble with radius
R0 = 150 µm (R0/Rmax =0.5), will collapse in 1.11 µs, whereas ‘C’ and ‘E’ bubbles with
the same R0/Rmax value have collapse times of 0.95 and 1.32 µs, respectively. For very
small values of R0/Rmax, the collapse time tends towards zero.

If the dimensionless Kelvin impulse is investigated (figure 9), the non-oscillating
curve is again largely located between the ‘C’ and ‘E’ curves, similar to figure 6. This
is also the case for the dimensionless kinetic energy at the moment of jet impact
(figure 10), except for large values of R0/Rmax. Finally, the displacement of the bubble
centroid at the moment of jet impact for non-oscillating bubbles is again found to be
more or less between the ‘C’ and ‘E’ curves (figure 11).

For the default gas bubble model with ε = 100 and γ = 1.25 (with its corresponding
value R00/Rmax = 0.1485) we can easily calculate the minimum pressure when the
bubble reaches its maximum volume from (2): pb,min = 0.078 bar, a value much lower
than the reference pressure pref = 1.0 bar. We might expect that when the pressure
inside the bubble is equal to pb = pref (for R/Rmax =0.51), the model for an oscillating
and a non-oscillating bubble would give the same results. However, this is not the case,
since the fluid around the oscillating bubble is in motion when the shockwave impacts
the bubble, whereas the fluid in the non-oscillating case is stationary everywhere at
t = 0.

5.2. Sensitivity of the results with respect to the bubble contents: empty bubbles

In the Appendix, it is shown that a high value of ε has little influence on the results.
In this section, the opposite case will be investigated for a zero value of ε, or, in other
words, an empty bubble with

pb = 0, (17)
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instead of (2). This corresponds to a completely empty bubble with no gas or vapour
contents (or a vapour bubble with vapour pressure very close to zero). The collapse
times show again a very similar trend to the default bubble model (results not
shown here). Again, as for the ε =3906 case (see Appendix), differences can only be
observed for R0/Rmax values smaller than 0.25. Also, the ‘E’ and ‘C’ curves do not
join at the bottom to form a closed loop. For R0/Rmax = 0.1, the bubble appears to
collapse spherically, without any jet formation. In figures 9 and 10, respectively, the
dimensionless Kelvin impulse and kinetic energy at the moment of jet impact for
ε = 0 are plotted. The behaviour for ε = 100, ε = 3906 and the ‘empty’ bubble are
similar for both ‘E’ and ‘C’ bubbles. The maxima and the minima appear at the same
locations and also the numerical values are almost identical. The displacement of the
bubble at the moment of jet impact for the empty bubble case (results not shown)
appears to coincide to a large degree with the ε = 100 (figure 11) results.

As shown here and in the Appendix (where a bubble with a very large value of
ε = 3906 is investigated), the contents of the bubble do not change the final results
significantly with respect to the Kelvin impulse, kinetic energy, etc. at the moment
of jet impact. This might be explained by examining the pressure plot of figure 3(b).
During most of the time, the pressure inside the bubble is very low and can be
considered as ‘almost empty’. As such, the value of the strength parameter ε has little
effect on the results.

5.3. Efficiency, validity and applications of the BEM model

The main advantage of our approach using the BEM lies in its efficiency. Typically,
this technique needs several minutes on a PC for a full simulation (up to jet impact)
as compared to traditional methods that require a much longer time. This is mainly
because only a mesh on the bubble is required and not in the fluid domain or in the
interior of the bubble. It could be argued that the potential flow approximation is
not strictly valid to simulate shockwave–bubble interaction as it is well known that a
shockwave by itself cannot be modelled using potential theory. However, Klaseboer
et al. (2006b) argued that the underlying physics of shockwave–bubble interaction is
still driven primarily by inertial effects of the surrounding fluid (in this case, water)
and, therefore, it is possible to model the shockwave as a pressure perturbation in
the liquid. Also, the compressibility of the fluid and internal shockwave in the bubble
were found to be of weak, secondary importance. In the foregoing work, the BEM
model of shockwave–bubble interaction agreed favourably with experimental data
and with results from other numerical methods that took into account these factors.
Furthermore, the extended version of this model (as presented in this paper) gives
results that correspond very well with experimental data from Sankin et al. (2005).
For example, using the water-hammer theory, a reasonable estimation for the pressure
resulting from the jet impact can be obtained.

A careful investigation of the curves for the experimental and water-hammer
pressure (figure 7), the jet and relative velocity (figure 8b), the Kelvin impulse (figure 9)
and the kinetic energy (figure 10), all at the moment of jet impact, shows that a
maximum occurs for intermediate values of R0/Rmax (around 0.6 for ‘C’ bubbles and
slightly lower for ‘E’ bubbles). The collapse time for R0/Rmax =0.6 is 1.2 µs for a ‘C’
bubble and 1.6 µs for an ‘E’ bubble as can be deduced from figure 6. These times
are approximately equal to the duration of the compressive portion of the shockwave
(∼1 µs, see figure 2b). It therefore seems that the observed maximum occurs for cases
in which the entire compressive part of the shockwave acts upon the bubble. For
lower values of R0/Rmax, only a portion of the available energy is transferred to
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the bubble, whereas for higher values of R0/Rmax, the tensile part of the shockwave
mitigates the effect of the compression. Both of these sub-optimal cases result in
collapses with reduced intensity (e.g. jet velocity, pressure, etc.) as compared to the
case with intermediate values of R0/Rmax. This phenomenon might be exploited in
future applications using shockwave–bubble interactions, such as drug delivery, tissue
removal, etc.

From the oscillation time of a bubble with a given reference pressure (6), we can
estimate the collapse time of the bubble (half the oscillation time) as

tcoll ∼ R0

√
ρ/PSh, (18)

where Psh is a typical pressure as felt by the bubble. In (18), Psh is unknown, but
we could use the maximum value of the shockwave as a first approximation. If we
take Psh = 39 MPa and R0 = Rmax, then the collapse time according to (18) would
be 1.50 µs. Numerically, we obtain 3.52 µs (figure 6); thus, (18) underestimates this
time. This can be easily explained, since (18) assumes that the pressure around the
bubble is Psh during the whole collapse, but in reality the ‘effective’ pressure is much
less, as can be seen in figure 2(b). In addition, (18) predicts a linear increase of the
collapse time with R0; however, figure 6 clearly shows an upwards-curving trend.
This can be attributed to the fact that for higher values of R0/Rmax, the tensile
part of the shockwave (figure 2b) delays the collapse process and contributes to the
upward-curving trends in figure 6.

It is not clear why there are observed differences in the jet shapes for ‘E’ and
‘C’ bubbles as shown in figure 5. It appears that ‘C’ bubbles produce slightly more
rounded jet tips than ‘E’ bubbles, which in turn are flatter (compare for example
figures 5a and 5d or 5b and 5e). For future applications, however, it might be
important to know whether the jet is pointed or broad-crested. The current BEM
framework can predict the shape of the jet, its speed and other physical parameters for
a given initial bubble size, bubble wall velocity and shockwave profile. This improved
insight into the physics of the collapse process may help optimize certain treatments,
such as kidney stone removal in shockwave lithotripsy.

6. Conclusions
A model based on the boundary-element method was used to simulate the

interaction of a shockwave with an oscillating bubble. The results were validated
and compared to experimental results. Collapse times of the experiments and the
model show very good agreement. Pressure peaks as measured experimentally due to
the impacting jet were compared with a simple water-hammer model also showing
good qualitative agreement. In addition, numerical values of the relative velocity (i.e.
jet velocity relative to the velocity of the opposite wall), the Kelvin impulse, the kinetic
energy and the bubble displacement, all at the moment of jet impact, were calculated
showing that the most intense collapses occur for intermediate values of R0/Rmax.
For these cases, the time scales of the collapse and of the compressive portion of the
shockwave are similar, resulting in a maximum transfer of available energy to the
bubble. For lower and higher values of R0/Rmax, the collapses are not as intense (at
least for the particular shockwave profile and maximum bubble radius studied in this
work).

The good agreement with experimental data suggests that, although the
compressibility of water surrounding the bubble and the internal shockwaves in the
bubble are neglected in our model, the model is essentially valid because the whole
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phenomenon is dominated by inertia. Other effects are probably of second-order
importance only.

A further advantage of using the BEM is a significant reduction in computational
time (minutes versus days, as performed on a PC) and effort as compared to other
methods such as the free-Lagrange method and the arbitrary Lagrangian Eulerian
method. This makes the BEM a useful tool for the study of the interaction of
shockwaves (or other pressure perturbations) with bubbles.

This paper was partially written while P. Z. was visiting the Institute for
Mathematical Sciences, National University of Singapore in 2007. The experimental
work in this study was supported by NIH through grants RO1-EB002682, RO1-
DK52985 and S10-RR16802 (PZ), and by Richard Wolf GmbH, Germany by
providing the FB12 generator.

Appendix. Sensitivity of the results with respect to the bubble contents:
influence of the bubble ‘strength’

The exact value of the initial pressurep00 for laser-generated bubbles such as those
of Sankin et al. (2005) is unknown. It is therefore interesting to investigate how the
value of ε will influence the numerical results. For a spherically oscillating bubble
(without any shockwave), the pressure at a distance d (d >R) from the centre of the
bubble can be expressed with the help of the unsteady Bernoulli equation, (1) and (3)
as (Inoue & Kobayashi 1993)

p(d, t) = pref +
R

d

[
ρ

2

(
dR

dt

)2

+ pb − pref

]
− ρ

2

R4

d4

(
dR

dt

)2

. (A 1)

At the bubble’s minimum radius R00 (at t = 0 or t = tosc), dR/d t = 0 and (A 1) reduces
to

p(d, 0) = p(d, tosc) = pref +
R

d
[p00 − pref]. (A 2)

The experimental peak pressures just after the creation of the bubble and at its
collapse were measured (without any external shockwave interaction) at a distance
of d = 1.1 mm away from the bubble. Both peaks have a maximum value of about
4.5 MPa. For underwater explosions (Cole 1948), the first peak is always many times
higher than the second. This difference can possibly be explained by the different
nature of the contents of the bubble. In principle, it is possible to calculate the
pressure inside the bubble just after creation, or p00, from these two peaks. By setting
R = R00 in (A2) and using (5), we derive the values ε = 3906 and R00/Rmax = 0.0413
at the time of bubble inception. With such a high value of ε (compared to the
default value of ε = 100), probably the emission of a shockwave in both expansion
and collapse phase occurs (which is also measured by the pressure sensor). Therefore,
the value of ε = 3906 as found above is a maximum value and the real value of
the internal gas pressure at inception will be much lower. As such, in most of the
numerical simulations of the previous sections, we have used the default value of
ε = 100.

In order to evaluate the effect of ε, a set of simulations was performed with the
value of ε =3906 and its corresponding R00/Rmax =0.0413, while keeping all the
other parameters constant. For the collapse times, the curves for ε = 3906 and ε = 100
almost coincide for most values of R0/Rmax (not shown here). Only for very small
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values of R0/Rmax can a deviation between the two curves be observed. It is found
that for collapsing ‘C’ bubbles with R0/Rmax < 0.2, no jet appears for the ε = 3906
case. The pressure in the bubble is so large (3906 bar) that the shockwave has little
influence on the bubble dynamics and subsequently no jet is formed. In contrast, for
expanding ‘E’ bubbles, a jet is formed for very small values of R0/Rmax. The value
3906 bar (390.6 MPa) is still much smaller than the discussed water-hammer pressure
of 1290 MPa of § 4.2, owing to the jet impact.

In figure 9, the dimensionless Kelvin impulse at the moment of jet impact (K ′)
as a function of R0/Rmax for ε = 3906 is plotted, together with the results for the
default model. For the whole range of R0/Rmax, the values of K ′ with ε =3906 almost
coincide with the ε = 100 curves. Similar remarks can be made for figure 10 where the
dimensionless kinetic energy E′ is presented at the moment of jet impact for ε = 3906;
it strongly resembles its counterpart at ε = 100. The equivalent displacement graph
(results not shown here) shows a strong resemblance to the results of figure 11 for
ε =100. Thus, it can be concluded that the value of ε does not greatly influence the
numerical results concerning the shockwave–bubble interaction.
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